OSP เครื่องกำเนิดไนโตรเจนที่มีความบริสุทธิ์ 95%-99.999% 435 psi ใช้สำหรับการตัดไฟเบอร์เลเซอร์ 20000W พร้อมใบรับรอง ASME
การผลิตไนโตรเจนที่ดำเนินการโดยใช้เทคโนโลยีการดูดซับด้วยแรงดันสวิง (PSA) บนตะแกรงโมเลกุลคาร์บอน (CMS) ถือเป็นวิธีการที่สมบูรณ์ คุ้มค่า และมีประสิทธิภาพสูงในการผลิตไนโตรเจนเพื่อให้ตรงตามข้อกำหนดด้านความบริสุทธิ์และการไหลที่หลากหลายการเพิ่มประสิทธิภาพอย่างต่อเนื่องในโรงงานผลิตไนโตรเจนที่ใช้ PSA นั้นได้รับแรงผลักดันจากวัสดุ CMS ที่ได้รับการปรับปรุง (รูปที่ 1) และการปรับปรุงกระบวนการบทความนี้ให้ภาพรวมของพื้นฐานของการสร้างไนโตรเจนโดยใช้ PSA ในขณะที่เน้นไปที่แนวทางปฏิบัติเชิงนวัตกรรมและวัสดุ CMS ที่ได้รับการปรับปรุงโดยเฉพาะความก้าวหน้าเหล่านี้ร่วมกันมีส่วนช่วยปรับปรุงประสิทธิภาพของระบบ PSA อย่างต่อเนื่อง ทำให้ผู้ควบคุมโรงงานในอุตสาหกรรมกระบวนการเคมี (CPI) ได้รับการพิสูจน์แล้วในการผลิตแหล่งจ่ายไนโตรเจนแห้งที่มีความบริสุทธิ์สูงที่เชื่อถือได้และต้นทุนต่ำในสถานที่
รูปที่ 1 เม็ดตะแกรงโมเลกุลคาร์บอน (CMS) ซึ่งโดยทั่วไปผลิตจากกะลามะพร้าว จะให้พื้นที่ผิวและโครงสร้างรูพรุนที่จำเป็นในการแยกออกซิเจนและไนโตรเจนออกจากกระแสอากาศเข้าที่ถูกอัด
เอ็นไอโตรเจน — ทั้งในสถานะก๊าซและของเหลว — ถูกนำมาใช้ในการใช้งานที่หลากหลายในภาคอุตสาหกรรมจำนวนมากซึ่งรวมถึงการผลิตอาหารและเครื่องดื่ม เคมีภัณฑ์และยาการแปรรูปปิโตรเลียมการบำบัดความร้อนของโลหะการผลิตกระจกแบน เซมิคอนดักเตอร์ และอิเล็กทรอนิกส์และอื่น ๆ อีกมากมาย.โรงงานอุตสาหกรรมที่ต้องการไนโตรเจนปริมาณมากมักจะมองหาวิธีการผลิตไนโตรเจนในสถานที่ที่มีประสิทธิภาพเสมอ เพื่อให้ตรงตามข้อกำหนดทั้งหมดที่เกี่ยวข้องกับความบริสุทธิ์ ข้อกำหนดการไหล การใช้พลังงาน พื้นที่ใช้งาน และความสามารถในการเคลื่อนย้าย
ก๊าซไนโตรเจนผลิตโดยการแยกอากาศออกเป็นโมเลกุลส่วนประกอบหลัก (ไนโตรเจนและออกซิเจน) โดยใช้วิธีใดวิธีหนึ่งจากสองวิธี: 1. การแยกส่วนอากาศด้วยความเย็นจัดแบบดั้งเดิมที่ถูกทำให้เป็นของเหลว;หรือ 2. การแยกอากาศที่เป็นก๊าซโดยใช้ระบบดูดซับแบบสวิงแรงดัน (PSA) หรือระบบแยกแบบเมมเบรนหากต้องการไนโตรเจนปริมาณมากที่มีความบริสุทธิ์สูงมาก (99.998%) การแยกส่วนอากาศด้วยความเย็นจัดยังคงเป็นทางเลือกเทคโนโลยีที่มีประสิทธิภาพและประหยัดที่สุด [ 2 ]นี่เป็นวิธีการผลิตไนโตรเจนที่เก่าแก่ที่สุด และมีความสามารถในการผลิตทั้งไนโตรเจนแบบก๊าซและไนโตรเจนเหลว (สำหรับใช้ประจำวันและเป็นอุปทานสำรอง)โดยทั่วไปแล้ว การแยกส่วนอากาศแบบไครโอเจนิกจะดำเนินการในโรงงานเชิงพาณิชย์ขนาดใหญ่ จากนั้นจึงส่งมอบไนโตรเจนที่ผลิตให้กับผู้ใช้
อย่างไรก็ตาม ในโรงงาน CPI หลายแห่ง ไนโตรเจนเสริมสมรรถนะถูกผลิตขึ้นที่ไซต์งานโดยใช้ระบบแยก PSA ขนาดเล็กหรือระบบแยกแบบเมมเบรนระบบ PSA ทำงานบนหลักการดูดซับทางกายภาพของออกซิเจนในอากาศด้วยวัสดุตะแกรงโมเลกุลคาร์บอน (เช่นที่แสดงในรูปที่ 1) โดยปล่อยให้กระแสไนโตรเจนเสริมสมรรถนะเป็นผลิตภัณฑ์กระบวนการนี้แสดงไว้ในรูปที่ 2 ระบบ PSA ในปัจจุบันสามารถผลิตไนโตรเจนจากอากาศอัดในเชิงเศรษฐกิจได้ในปริมาตรที่หลากหลายตัวอย่างเช่น ระบบในปัจจุบันสามารถรองรับกระแสอากาศเข้าที่น้อยกว่า 5,000 ถึงมากกว่า 60,000 stdft3/h ผลิต N2 ได้อย่างน่าเชื่อถือซึ่งตรงตามข้อกำหนดด้านความบริสุทธิ์ตั้งแต่ 95 ถึง 99.9995%
รูปที่ 2 ภายในเม็ด CMS ออกซิเจนจะถูกดูดซับเป็นพิเศษ ซึ่งช่วยให้สามารถดักจับกระแสผลิตภัณฑ์ที่อุดมด้วยไนโตรเจนเพื่อใช้นอกสถานที่
อย่างไรก็ตาม ต้นทุนและต้นทุนการดำเนินงานของระบบ PSA มีความสัมพันธ์โดยตรงกับความบริสุทธิ์ของไนโตรเจนที่ผลิตได้ และต้นทุนเหล่านี้จะเพิ่มขึ้นอย่างรวดเร็วเมื่อต้องการไนโตรเจนที่มีความบริสุทธิ์มากกว่า 99.5%ในบางกรณี อาจคุ้มค่าในการผลิตไนโตรเจนที่มีความบริสุทธิ์สูงกว่าโดยการผลิตไนโตรเจนที่มีความบริสุทธิ์ 99.5% ก่อนโดยใช้ระบบ PSA จากนั้นใช้แพลเลเดียมหรือหน่วยทองแดงเพื่อกำจัดระดับออกซิเจนที่ตกค้างในผลิตภัณฑ์ไนโตรเจนระบบดังกล่าวสามารถลดออกซิเจนตกค้างเหลือ 1–3 ppm
การเลือกระบบที่เหมาะสม
เมื่อเลือกกระบวนการผลิตไนโตรเจนที่เหมาะสมที่สุด ควรพิจารณาพารามิเตอร์หลายประการความบริสุทธิ์และกำลังการผลิตเป็นปัจจัยที่สำคัญที่สุดที่อาจส่งผลต่อการเลือกวิธีการผลิต และด้วยเหตุนี้ จึงมีผลกระทบโดยตรงต่อต้นทุนต่อหน่วยของไนโตรเจนที่ผลิตได้การใช้ระบบสร้างไนโตรเจน PSA ซึ่งสามารถออกแบบให้ตอบสนองทุกประเภทและรูปแบบของการไหลของไนโตรเจน — คงที่ เป็นระยะๆ และไม่แน่นอน — ได้รับความนิยมเพิ่มขึ้นในช่วงหลายทศวรรษที่ผ่านมา เนื่องจากความเรียบง่าย ประสิทธิภาพ ความยืดหยุ่น และความน่าเชื่อถือ และมีเงินทุนและต้นทุนการดำเนินงานค่อนข้างต่ำในเส้นทางการผลิตนี้
อย่างไรก็ตาม อัตราการผลิตไนโตรเจนที่เหมาะสมที่สุดโดยใช้ระบบ PSA ที่ใช้เม็ด CMS คือประมาณ 3,000 Nm3/h ของ N2 ที่ผลิตได้ (>95% ความบริสุทธิ์)ภายในช่วงดังกล่าว PSA เป็นตัวเลือกที่ประหยัดมากกว่าการแยก O2/N2 โดยการแยกของเหลวในอากาศและการแยกด้วยความเย็นจัด หรือโดยการแยกโดยใช้เมมเบรนหลักการของเทคโนโลยีการสร้างไนโตรเจนบน PSA โดยใช้ CMS และความรู้ด้านวิศวกรรมกระบวนการที่สำคัญหลายประการมีดังต่อไปนี้
ตะแกรงโมเลกุลคาร์บอน
CMS เป็นส่วนหนึ่งของถ่านกัมมันต์ประเภทพิเศษที่มีโครงสร้างไม่เป็นผลึก (อสัณฐาน) และมีการกระจายขนาดรูพรุนที่ค่อนข้างแคบวัสดุนี้ให้การแยกโมเลกุลตามอัตราการดูดซับของไนโตรเจน แทนที่จะเป็นความแตกต่างในความสามารถในการดูดซับระหว่างออกซิเจนและไนโตรเจนรูปที่ 2 แสดงโครงสร้างภายในของวัสดุ CMS ที่เหมาะสมสำหรับการแยก (กำจัด) โมเลกุล O2 ออกจากโมเลกุล N2 ในช่องอากาศอัด เพื่อให้ได้กระแสไนโตรเจนที่ได้รับการเสริมสมรรถนะ (หมายเหตุ: ตะแกรงโมเลกุลคาร์บอนจะถูกคัดเลือกสำหรับออกซิเจน ในขณะที่ ตะแกรงโมเลกุลซีโอไลต์เป็นแบบคัดเลือกไนโตรเจน)
คุณสมบัติได้แก่:
การออกแบบเตียงคู่และเตียงเดียว
แพ็คเกจที่สมบูรณ์พร้อมถังกรองเบื้องต้นและถังบัฟเฟอร์
ปลอดภัยและเชื่อถือได้
ผลิตไนโตรเจนบริสุทธิ์ 95 - 99.999% อย่างต่อเนื่อง
จุดน้ำค้างถึง -58°F (-50°C)
ตัวกรองอากาศปลอดเชื้อในขั้นตอนสุดท้ายได้รับการยอมรับจาก USDA / FSIS เพื่อใช้ในโรงงานเนื้อสัตว์และสัตว์ปีกที่ได้รับการตรวจสอบจากรัฐบาลกลางปฏิบัติตามข้อกำหนดของ FDA และ GFSI อย่างสมบูรณ์
อาคาร PSA ไม่ต้องการการบำรุงรักษา
รายการ | ความบริสุทธิ์ของไนโตรเจน (Nm3/ชม.) |
ขนาด
|
น้ำหนัก | ||||||
95% | 99% | 99.5% | 99.9% | 99.99% | 99.995% | 99.999% | (ย*ก*ส) มม | กิโลกรัม | |
OSP5 | 21 | 13 | 11 | 8 | 5 | 4.2 | 3 | 1100*600*1700 | 300 |
OSP10 | 38 | 29 | 25 | 15 | 10 | 7.5 | 6.1 | 1200*650*1800 | 350 |
OSP20 | 80 | 56 | 52 | 32 | 20 | 16 | 14 | 1600*1000*2200 | 450 |
OSP40 | 160 | 116 | 105.2 | 67.2 | 40 | 34 | 28 | 1800*1000*2200 | 600 |
OSP60 | 252 | 174 | 157.8 | 100.8 | 60 | 51 | 45 | 1900*1200*2200 | 750 |
OSP80 | 339.2 | 232 | 211 | 132 | 80 | 70 | 62 | 2000*1200*2400 | 980 |
OSP100 | 420 | 290 | 263 | 168 | 100 | 90 | 78 | 2100*1600*2500 | 1300 |
OSP150 | 630 | 435 | 394.5 | 252 | 150 | 135 | 120 | 2500*1800*2600 | 1600 |
OSP200 | 848 | 580 | 526 | 336 | 200 | 180 | 160 | 2800*1900*2850 | 2200 |
OSP250 | 1,060 | 725 | 657.5 | 420 | 250 | 225 | 200 | 3100*2000*3200 | 2600 |
OSP300 | 1270 | 870 | 780 | 500 | 300 | 260 | 240 | 3900*2600*3400 | 3850 |
OSP400 | 1696 | 1160 | 1,052 | 672 | 400 | 360 | 320 | 4500*3250*3600 | 5,000 |
OSP500 | 2120 | 1450 | 1300 | 840 | 500 | 450 | 400 | 4900*3600*3800 | 6500 |
OSP600 | 2540 | 1740 | 1578 | 1,000 | 600 | 540 | 480 | 5300*3600*3900 | 7800 |
OSP800 | 3390 | 2320 | 2100 | 1340 | 800 | 720 | 640 | 5600*3900*4100 | 10200 |
OSP1000 | 4240 | 2900 | 2630 | 1680 | 1,000 | 900 | 800 | 5800*4000*4500 | 11800 |
อ้างอิงการออกแบบ:
แรงดันอากาศเข้า 7.5 bar(g)/108 psi(g)
คุณภาพอากาศ 1.4.1 ตามมาตรฐาน ISO 8573-1:2010
แรงดันทางออกของไนโตรเจน 6 บาร์(ก.)/87psi(ก.)
คุณภาพไนโตรเจน 1.2.1 ตามมาตรฐาน ISO 8573-1:2010
ออกแบบอุณหภูมิการทำงานสูงสุด 50 ℃
จุดน้ำค้างที่ทางออกไนโตรเจน - 40 ℃
หมายเหตุ:
เครื่องกำเนิดไนโตรเจน OSP แรงดันใช้งานสูงสุด 10 บาร์(ก.)/145psi(ก.)
คำขอต่อไปนี้ของเครื่องกำเนิดไนโตรเจนในสถานที่ PSA จะได้รับการปรับแต่ง:
แรงดันใช้งาน >10 บาร์(ก.)/145 psi(ก.)
จุดน้ำค้าง < - 50 ℃
เสียบและเล่น
เคลื่อนย้ายได้/เป็นตู้คอนเทนเนอร์
ข้อกำหนดพิเศษอื่น ๆ ตามเงื่อนไขของไซต์